“Soft Materials Design by Computer Simulations”

Monica Olvera de la Cruz
Soft materials constitute the basic component of living systems, are integrated into the fabric of modern society, and will play a key role in futuristic devices.

Examples:
Liquid crystals, colloids, polymers, surfactants, membranes (liquid or elastic), gels, viruses,...
Soft Materials are Hard

- Polymers and soft materials are for the most part *amorphous* fluids or solids with embedded structures spanning nanometers to microns and even millimeters or more.

- Soft materials can possess an extraordinarily broad spectrum of *timescales* often covering more than ten orders of magnitude.

- In many cases the relaxation processes contributing to this broad spectrum involve nonequilibrium phenomena such as vitrification, jamming, or constrained crystallization.
Motivation

• Because of the combination of chemical versatility and the ability to create structures with unique tailored features at different length scales, soft matter entities are attractive materials from which to construct novel materials

• Soft matter is fascinating and there are many open problems

• Advances rely on physics, chemistry, biology and engineering
Viral capsids are the shells of viruses that contain DNA or RNA) are icosahedra when they are large.

Organels are cellular nano-compartment (nano-reactors that synthesize energy) that take many polyhedral geometries (Bacterial microcompartments Fan CG, et al. PNAS (2010)).
Dodecahedral Coccolithophorids

Braarudosphaera bigelowii Braarudosphaera bigelowii

images from Jeremy Young’s web page
National History Museum, London, UK
images courtesy of Pupa Gilbert, UW-Madison

Viruses (ex: Mimivirus)
Biological examples include viruses, organelles and archaea organisms

Carboxysomes

Carboxysomes are bacterial microcompartments (~80 to 140 nm) that contain enzymes (like RuBisCO) involved in carbon fixation. These organelles are found in all bacteria that fix carbon dioxide.

(B)
Halophilic organisms live at very high salt concentrations

ARCHAEO organisms envelops take polyhedral shapes. They have hexagonal packing crystalline surfaces

Ionic Membranes
What is the shape of crystalline ionic shells?

Palmitic (water insoluble) acid trilysine (micelle in water)

X-ray scattering and TEM show a hexagonal lattice that buckled into low symmetry shapes: WHY?

These crystalline shells, are stable even at high salt concentrations. Good for biomedical applications.

Why the icosahedron is ubiquitous?
Explanation within classical theory of elasticity of thin shells cannot fold onto a sphere.
Defects on curved surfaces

\[N_5 - N_7 = 12(1 - g) \]

\[N_5 = 12, \quad N_7 = 0 \]

\(g = 0 \)

\(g = 1 \)

\[N_5 = N_7 = 0 \]
Defects (disclinations) on curved crystalline closed spherical surfaces

$g = 0$

$N_5 = 12$

Defects are in icosahedral positions (Bowick, Nelson, Travesset Phys. Rev. B (2000))

Icosahedral symmetry is not icosahedral buckling (Lidmar, et al, Phys. Rev. E (2003))
Buckling

\[E \]

\[\log (R/a) \]

\[\sim R^2 \]

flat

buckled

increase in \(R \)

buckle at disclination

\[\gamma = \frac{YR^2}{\kappa} \geq 154 \]

\(Y \) – Young’s modulus, \(\kappa \) – bending rigidity
On a sphere all 12 defects simultaneously act as seeds for buckling.

How about heterogeneities?

* of elastic parameters
Elastically heterogeneous shells

- Shells made by more than one protein or components
- They form many polyhedral geometries with patterns even without chemical incompatibility.
- That is, even compatible components are segregated due to their different mechanical properties which leads to specific buckled shapes.
- The patterns are coupled to the shape of the shell.
Structures of shells

\(\kappa_{\text{hard}} / \kappa_{\text{soft}} = 50, \ Y_{\text{hard}} / Y_{\text{soft}} = 1 \)

(G. Vernizzi, R. Sknepnek, M. Olvera de la Cruz – PNAS 108, 4292 (2011))

- Blue: prefers to buckle
- Red: prefers to stay flat
1-hosohedron and 2-hosohedron (top row, on the left), regular platonic solids (tetrahedron, cube, octahedron, dodecahedron and icosahedron) and the truncated polyhedra.

Fragmentation!!
Salmonella Pdu Microcompartments, courtesy of Danielle Tullman-Ercek, UCB (note, when only one protein is present shape is spherical: Schmidt-Dannert Plos One 7, e33342 (2012))
Experiments

palmitic acid trilysine

+3 cation from three lysine amino acid residues

form micelles in water

Israelachvili, 1992

palmitic acid

-1 anion from carboxylic acid

water insolvable
Mixtures of 3+ and -1 amphiphiles
pH 3 to 7 vesicles

ph 7 to 9 ribbons

ph 10 vesicles
Lattice was formed only with cation + anion mixture.

The scan with cation micelles alone do not have sharp peaks.

Electrostatic attraction induce crystallization of tails.

(Leung et al ACS Nano, 2012)
Catanionic bilayer at pH~3 (only some anion ionized)
3.9 nm (hydrophobic layer)

Catanionic bilayer at pH~8 (anion fully ionized)
2.5 nm (hydrophobic layer)

Analog to 30% ionization of palmitic acid in atomistic simulation

Analog to 95% ionization of palmitic acid

(Leung et al ACS Nano, 2012)
Soft and thin

Hard and thick

Thinner membrane (h_s) and more disorder along the highly bended areas than along the flat areas (h_h). Mechanics of thin solids suggests that the bending rigidity goes as h^3 (so is very less sensitive to thickness).

Water or molecule permeations?
For R=50nm vesicle with 25x25(=625)nm2 crystalline domains (from WAXS broadening of peaks), there are ~ 50 platelets. Small R gives less symmetric vesicles than large R (more spherical).

STABLE AT HIGH SALT
2+/-1 Ampjhipiles at Fixed pH = 3
Varying tail length

WAXS results

Intensity (arb. unit)

10^{-1} 10^{-2} 10^{-3}

q (nm^{-1})

12 14 16 18

C_{14}

C_{16}

C_{18}

C_{20}

C_{22}

Area/ molecule = 0.205 nm²

Area/ molecule = 0.197 nm²
Phase diagram for 2D crystal lattice 2+/−1 amphiphiles (tail length versus pH)

(Leung et al, PNAS 2013)

Small window on chain length where all interactions are of the same order of magnitude
KT give pH re-entrant transitions
Analogy to ceramics

Ceramics are typically 3D crystals with ionic bonds.

Ionic square crystals break up due to curvature.

Ceramics are strong until they shatter under shear.

from wikipedia
Summary

• Regular and irregular polyhedral geometries, arise spontaneously in shells formed by more than one component such as cellular containers.

• While spherical and icosahedral shells are abundant in nature, the less symmetric polyhedral shells are potentially more functional and appear at the nanometer length scales where their functionality can be fully exploited.

• Ionic closed crystalline membranes have hexagonal lattices (important for design).

• A subtle balance of interactions allows transitions by external parameters (pH in this case).
Ionic nanocontainers experiments and modeling over various length scales

+3e (micelle in water)

-1e (insolvable in water)

X-Ray gives tails symmetry packing but with by neutron (deuterion label) superlattices!

(a) CG simulation (Martini), & (b-d) TEM
Our model predicts faceting into many possible polyhedra with decorated surfaces that offer higher functionality.
Strongly charged polyelectrolyte gels expand in monovalent salts and adsorb water (dipper) but collapse in divalent salts (chromosomes).

Physics: Swell to increase osmotic pressure of the ions and collapse due to ionic correlations.
Challenge: Structures are not periodic like molten salts!
Supramolecular materials mimic biological fibers or cytoskeleton of cells including microtubules, actin filaments, and intermediate filaments and tissues offering the possibility to fabricate materials with the properties of living systems.

Peptide amphiphiles (PA)
Hydrogels as synthetic cell scaffolds

Substrate stiffness influences cellular
- adhesion
- movement
- proliferation
- differentiation

GOAL: Develop methods to align peptide amphiphile (PA) nanofibers.

Highly aligned cellular environments:
- smooth muscle
- cardiac muscle
- brain
- spinal cord

Challenge: Alling micron size fibers that are soft and small to be manipulated directly

2 IBM/EPFL Blue Brain Project
micrometers long with diameter ~10 nm

Milimmeter thread

Preferential alignment of human mesenchymal stem cells along the axis of a noodle

Action potential propagation in a noodle seeded with cardiomyocytes

Conductive noodle with carbon nanotubes

Images courtesy of S. Zhang and J. Mantei
Heat Induced Alignment
Only annealed PA leads to alignment

Cooling: Plaques break into bundles of fused fibers as water molecules rehydrate the PA

Noodles with PA solutions

annealed at 80 °C

Non-annealed PA solutions

25 °C fused PA fiber bundles

Images courtesy of Dr. A. Mata and Dr. R. Bitton
Peptide Amphiphile-Polymer Hybrid Materials

PA-polymer hybrids contracts at high T

Polymerized aligned gels (15 mm x 2 mm) show anisotropic contraction

Making aligned gels:

Annealed PA
Aligned gel
Shear force
0.1M divalent salts

Next steps:
Control of gel shape and direction of contraction
Analyze buckling of such heterogeneous system

Nat. Mater. 2010, 9, 594
Buckling in Heterogeneous Elastomers

Bi-trips gels lead to looped patterns in gut tubes, which twists as a bi-layer gel

Gut tube and associated sheet tissue

Bi-layer gel in poor solvent

Top: Free end. Down: Fixed end

A perversion is a kink that connects two helices with opposite chirality observed in natural and artificial mechanical systems.

Perversions provide the fundamental mechanism of helical symmetry breaking and is an actuator.

The elastic energy condenses around the perversion during buckling and at the interface corners.
Multiple Perversions and Symmetry Breaking

- Symmetry breaking during buckling
 - Rightmost perversion wind before the other two
- Repulsive interaction between perversions 1 and 2

Liu et al PNAS 2016
Soft materials are integral to developments in organic electronics, such as energy harvesting organic photovoltaic devices (OPV) and new display and lighting technologies (OTFT, OLED), and to advanced medical devices and therapies (implants, tissue engineering, drug delivery, personalized medicine).
Molecular electrolytes and ion-containing polymers are the basis for products ranging from super-absorbents, separators, and membranes for advanced energy devices such as batteries and fuel cells.
Polymer electrolytes - Industrial applications

Polymer electrolytes

• Powerful Li-ion batteries can power entire factories
 – Heavy
 – Bulky
 – Expensive
 – Combustible

• Polyelectrolytes
 – Flexible
 – Lightweight
 – Low-cost
 – Recyclable
 – Space applications

Tesla. www.testlamotors.com/powerwall
Block co-polymer electrolytes

– Multi-scale interactions

• Repulsion of polymer chains (10-100 nm)

• Coupling of opposite charges (1 nm)

• Combine approach that bridges the two length scales (SCFT-LST)
Ionic correlations drive self-assembly

Neutral

Charged
Self-assembly of inverted phases

Dynamics of mobile ions

- Transport of ions through the polyelectrolyte nanodomain
- High ionic mobility required for high battery performance
Molecular Dynamics

Coarse-grained Model:
- bead-spring chain (N monomers)
- steric interaction (LJ)
- bond interaction (FENE)
- Coulomb interaction (PPPM)
- implicit solvent

Electrostatics:
- monomers $q = +1$;
- counterions, $q = -1$;
- Bjerrum length:

$$l_B = \frac{e^2}{4\pi\varepsilon_0\varepsilon_r k_B T}$$

Counterion mobility

$$\mu = \frac{v_{drift}}{qE}$$

Li et al Macromolecules 2016
• The mobility increases as the confinement/concentration increases at low electric field E and it is E independent up to $E=E^*$ and or $E > E^*$ it increases with E until it saturates at $E \gg E^*$, qE^*
Opportunities

• Soft materials will play a key role in the technologies that will underpin new business opportunities, employment, and economic vitality since they impact sectors of global energy, water, medicine, agriculture, and sustainability.

• There are many opportunities in energy production, storage and conversion, water purification and reuse, and biotechnology.
Opportunities in Theoretical and Computational Polymeric Materials and Soft Matter
A National Science Foundation Sponsored Workshop
Chairs: Monica Olvera de la Cruz and Michael Rubinstein
Santa Barbara, California, October 20-22, 2013

Topics:

Reversing the Arrow: Materials by Design

Exploiting Geometry in Form and Function

Harnessing Non-Equilibrium Processes

New Paradigms Inspired by Nature

Bridging Scales in Space and Time

THANK YOU!